Improving measurements of the kilogram

2022-08-27 01:31:56 By : Mr. Anty Chen

Click here to sign in with or

Until 2018, the SI unit of mass, the kilogram, was defined as the mass of a real object: the International Prototype Kilogram, kept in a secure facility in the outskirts of Paris. On November 16, 2018, the kilogram was given a new, internationally-accepted definition, based on three defining constants: the speed of light, the Planck constant, and the hyperfine transition frequency of cesium. One of the methods to measure a mass based on the new definition is a device named the Kibble balance.

Despite the current precision of this device's measurements, its components can be improved to reduce sources of uncertainties. Through new research published in EPJ Techniques and Instrumentation, Darine Haddad and colleagues at the National Institute of Standards and Technology (NIST) show how a new, optimized approach to the Kibble balance's design could further improve its accuracy.

Today, the Kibble balance allows researchers to measure macro-scale masses, based directly on fundamental quantum principles. To do this, two quantum effects are measured: named the Josephson effect, and quantum Hall resistance (QHR)—a quantized form of electrical resistance, which can be measured in 2D materials at low temperatures, when subjected to strong magnetic fields. Currently, QHR is realized in a separate experiment externally to the measurement system, introducing uncertainties to the Kibble balance's overall measurement.

To overcome this problem, researchers at NIST are developing the Quantum Electro-Mechanical Metrology Suite (QEMMS). This device implements QHR directly into the electrical circuit for the Kibble balance, and the system for measuring the Josephson voltage—eliminating any calibration uncertainty.

In their study, Haddad's team present an optimized design for QEMMS, targeting masses ranging from 10 to 200g. For masses of 100g, they showed that measurements could be made with a relative uncertainty of just 2x10-8—offering considerable improvements on previous Kibble balance designs. As a result, QEMMS could soon allow researchers to make independent, ultra-precise measurements of macroscopic masses—significantly improving their experimental data. Explore further New measurement will help redefine international unit of mass More information: Lorenz Keck et al, Design of an enhanced mechanism for a new Kibble balance directly traceable to the quantum SI, EPJ Techniques and Instrumentation (2022). DOI: 10.1140/epjti/s40485-022-00080-3 Provided by Springer Citation: Improving measurements of the kilogram (2022, August 1) retrieved 26 August 2022 from https://phys.org/news/2022-08-kilogram.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

More from Other Physics Topics

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

Medical research advances and health news

The latest engineering, electronics and technology advances

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.